
DATE: February 25, 2020

TO: Robert Heath

FROM: Arkan Abuyazid, Shehryar Ahmed, Brandon Lee, Akash Shukla, Meenakshi

Swaminathan, Kan Vanthanasuksan

SUBJECT: Comprehensive plan for implementing our project

1.0 INTRODUCTION

Overall, we aim to create a design that is basically a system that can automatically determine the

optimal JPEG quantization parameter when compressing an image. We define this optimal

quantization parameter as the point that maximizes compression while still maintaining

human-perceptual quality. The main distinction between our design and other pre-existing

compression-optimizer solutions is that our perceptual predictor will be based exclusively on real

human perception datasets as opposed to quality references and often-used pseudo-perceptual

metrics.

As our project requires a dataset of human decisions, our main method of data collection will be

through Amazon's Mechanical Turk (MTurk), which is a crowdsourcing platform that involves

the distribution of a virtual task to a large human workforce. Our task will allow workers to

control the quality of the images through a real-time slider that compresses the image according

to the slider value so that they can determine the perceived optimal point of compression. The

collected dataset will be fed into a neural network that we will construct, customize, and train so

that the model can learn and eventually automatically predict the optimal quantization parameter

for any input image.

This System Design Report will go into detail about how we define and measure a successful

image compressor. The motivations, methods, goals, target users, challenges surrounding the

design will also be explained. Furthermore, the report will cover the necessary steps that we took

to ensure a successful execution of the project such as any Risk Reduction research, experiments,

and activities that were performed as well as a detailed plan of how our design will be tested

during and after the implementation phase. A complete schedule, responsibility, and delivery

plan will also be shown, which includes the Work Breakdown Structure (WBS), Linear

Responsibility Chart (LRC), Gantt Chart, and Bill of Materials (BOM). The WBS gives a visual

representation of our design broken down into multiple activities and major tasks. The LRC links

these assignments and major tasks to each team member and describes the division of

responsibilities. The Gantt chart provides a clear overall schedule of the implementation of all

the design phases and specifies the milestones and deadlines of the assignments and major tasks.

2.0 DESIGN PROJECT BACKGROUND

Our end goal is to create a system that is automatically capable of determining the optimal JPEG

quantization parameter for compressing an image without compromising human-perceptual

quality. Many current compression technologies rely on various metrics that are

pseudo-perceptual [1]; however, we will differentiate ourselves and propose a better alternative.

We will do this by gathering data on the human-perceived balance between compression and

quality and by constructing a perceptual predictor that is based solely on datasets of real human

decisions. In order to accomplish this, the foundation of our solution will be built on image

processing, accurate datasets, machine learning models, and automation. Ultimately, our end

product will take the form of a trained system that imitates human perception, predicts the

optimal level of compression and quality for any image, and produces the optimal compressed

image. We define a successful project to be one that produces images that are, on average, 5%

smaller than images compressed according to the Structural Similarity Index (SSIM) standard

and have a quantization parameter that is within +/- 3 of the human-perceived optimal

quantization parameter. Note that JPEG quantization parameters vary on a scale from 1 to 100,

with 100 being no change in the original image and 1 being the lowest quality possible [2].

Additionally, we would like both individuals and large companies to be able to use our model.

This poses two requirements for our solution. First, it should use small amounts of RAM and

storage in order to run efficiently on personal computers. Second, it should be able to quickly

process many images at once so that it can keep up with the data flow of a major company.

2

Existing models similar to the one that we propose use pseudo-perceptual metrics such as the

SSIM to gauge the clarity of the compressed image [3]. SSIM assesses quality by measuring the

similarity between the original image and the compressed version; if the original and the

compressed images are highly similar, the compressed image is considered to be high quality,

and vice versa [3]. Notice that using SSIM assumes that the original image was high quality

before compression. If the original image was low quality initially, then SSIM may determine a

compressed version to be high quality since it looks like the original, but the compressed image

would subjectively be considered poor quality. Instead, our method will be unique in that it will

use actual human perception to determine optimal compression levels. This should give our

model an edge; it should be able to more accurately choose the compression level that a human

would consider ‘optimal.’

This end goal will require collecting large amounts of human-perceptual data, training a model

with this dataset, and testing the accuracy of the predictor. In the data collection step, we will

utilize Amazon’s Mechanical Turk (MTurk), a crowdsourcing tool that allows us to distribute

virtual tasks to a human workforce. The MTurk task interface will show a series of images with

two sliders underneath each image to collect worker opinions. The MTurk workers need to

visually see the effect of compression in real-time and determine the optimal point without

knowing the change in file size. Through this process, we aim to gather an accurate dataset that

is reliable, varied in users, and large enough in sample size. Based on Professor Bovik’s past

experience, humans tend to agree when evaluating image quality, so we expect the

human-selected compression levels to be fairly consistent for a particular image. We do,

however, expect some variance in mean compression level between different images, since some

images are more compressible than others.

The second step involves constructing a neural network to process the collected data. There are a

variety of methods we could employ in designing our network, which we discuss in Section

3.1.2. For whichever method we implement, the network must take an image of arbitrary size

(within reason) and produce the optimal compression level. Once the network is trained, it can be

3

saved as the architecture and the trained weights. We will need to store the architecture and the

weights in the final application. Assuming equal performance, we will favor networks with a

smaller architecture and fewer weights, since having fewer weights means the end product will

be smaller in size.

The final deliverable product will take on two forms. The first is a command line interface (CLI),

while the second will be a graphical user interface (GUI). Both will perform the same

functionality, which is to take as input a set of images whose optimal compression level is

desired and then output the optimal quantization parameters. Each form will also have the option

to output the compressed images themselves. The CLI is designed to be run in a terminal, while

the GUI will be more user-friendly. These options provide solutions geared toward companies

that wish to embed our product into their own pipeline as well as everyday consumers who wish

to compress their images and are more comfortable with a graphical application.

3.0 SYSTEM DESIGN

We will discuss our design concept and risk reduction activities we completed that gave us more

insight regarding the problem and removed any early obstacles. We will explain the different

submodules in our design concept and the decisions behind why we structured them this way. We

will go in depth the intuition we gained through the risk reduction activities and what obstacles

we did remove. The most notable risk reduction activities are 1, 6, and 7. Activity 1 is a

proof-of-concept for our human study interface, demonstrating that we can use Amazon MTurk

to collect our data. Activity 6 is an experimentation with a neural network, ensuring that we have

a team member who is familiar with machine learning when we reach the neural network portion

of our project. Activity 7 is the implementation of a slider that is capable of real-time

compression, i.e. the image will compress while the slider moves, without requiring that the

worker let go of the slider to see the results of the compression. Activity 7 is important because it

demonstrates the viability of a core mechanic of our data collection. Furthermore, we will

provide the details of the testing that we plan to accomplish with both submodules of our design

concept and our entire solution as a whole.

4

3.1 Design Concept

As displayed in Figure 1, our design can be split into the Mechanical Turk (MT) submodule and

the Neural Network (NN) submodule. The MT submodule involves three main tasks. Building

the Amazon Mechanical Turk HIT page, verifying and clearing the crowdsource data, and then

configuring the data to be inputted into the NN submodule for training. The third task involves

ensuring that the HIT page properly outputs the results that we collect and making sure we know

how to transfer the results to our machine learning environment. The NN submodule trains the

neural network, produces the optimal compression parameters, and includes the command line

and graphical user interfaces. This submodule involves training, tuning, and testing the processed

crowdsource data. The final trained model in the NN submodule will be used to create the

command line interface (CLI) and graphical user interface (GUI). This is shown in the project

flow below in Figure 1.

Figure 1. System Block Diagram

3.1.1 Amazon Mechanical Turk Submodule

The MT submodule’s inputs are the approximately 8000 images, which we refer to as “the 8k

images,” that will be shown to the MTurk workers, and the outputs will be the optimal

compression levels selected by the MTurk workers. In each human intelligence task (HIT),

5

workers will be presented with a sequence of pages that each show one of the input images, and

below the image will be two slider bars. In each HIT, we expect to show the worker around 55

images that are randomly selected from the 8k images. We will also include integrity checks in

the study in the form of repeated images and so-called “golden images.” These integrity checks

are explained in detail in Section 3.1.1.1. With the integrity checks, each HIT will have 5 golden

images and 5 repeated images, so we will gather 50 scores from each HIT (since 5 of the images

are repeated). In total, we will run the study until we have at least 30 scores per image, at which

point we will conclude the data collection portion of the project.

Each slider bar controls the compression level of the input image, but the worker only controls

one slider at a time, as seen in Figure 2. When a worker first sees an image, the second slider will

be locked and the worker will be asked to move the first slider to the point just before they notice

any change between the original image and the displayed compressed image. Then, they will

click “Next,” which locks the first slider and unlocks the second slider. They will then be asked

to move the second slider to the point right before where they think the compression has

compromised the quality of the image. Once the worker picks the second slider value and clicks

“Next,” the worker will move on to the next image.

Figure 2. Two Slider HIT Page

6

We chose to implement two sliders because early tests of using just one slider (the second slider

from above) showed that workers are often confused about where we want them to move the

slider, and having the extra data from the second slider can also help in our model building. In

addition to heavily clarifying the instructions, we added another slider that forces workers to

make the distinction between the point where the compressed image looks different from the

original image and the point where the compressed image looks so different that the compression

has now caused the quality to drop. We hope to clarify the notion that an image can look

different due to compression but still have the same quality as the original. Furthermore, we may

try training on the values gathered from the additional slider, since some companies may wish to

find the point where a compressed image looks different from the original.

The MT submodule’s input images are a collection of images that are statistically similar to

Facebook images. In other words, the distributions of the 8k images’ resolution, luminance,

contrast, and other image characteristics are similar to those of Facebook images. The average

image on Facebook has decent resolution, while some have high resolution and others have low

resolution. The resolutions of the 8k images follow a similar distribution as well. Similarity to

Facebook images is desirable since one of the major applications of our project is to optimally

compress hundreds of millions of social media images. Training our network on images that look

similar to social media pictures will help make our model more accurate. Also, these images

were provided to us by our faculty mentor’s lab, the Laboratory for Image and Video

Engineering (LIVE), and we have permission to use these images in our MTurk study.

3.1.1.1 Integrity Checks

In order to ensure that workers are diligently completing our task, we have implemented integrity

checks within our HIT page. Namely, 5 of the images will be repeated and 5 of the images will

be golden images. A golden image is an image for which we have already determined the

optimal compression level, and our golden image data was collected from trusted friends in

laboratory-like settings. In total, we have 20 responses for each of our 65 golden images, but we

only have responses for the second slider. The golden image study was conducted before adding

7

what is now the first slider, so the golden image integrity checks will only be used on answers for

the second slider. Both the repeated images and the golden images serve to ensure that the

worker is providing genuine responses and is taking the task seriously. The worker is expected to

provide similar scores for each repeated image; workers will be rejected if repeated scores differ

too much. Similarly, the worker is expected to provide scores for the golden images where the

ranking, or order, or scores correlate well with the ranking of the true golden image scores.

In the repeated images quality check, 5 of the displayed images will appear twice. If the worker

is answering the questions diligently, we expect the worker’s answered compression levels for

each slider to be very similar for each appearance of a repeated image. We will determine if the

scores for repeated images are close enough if the difference between the scores is less than a

threshold value. We will calculate the threshold value by calculating the standard deviation of all

scores for a given golden image. Then, we will average the 65 standard deviations (one for each

golden image) to calculate an average standard deviation. This average standard deviation,

rounded to the nearest integer value, will be our threshold.

The workers’ second slider scores for the golden images are expected to rank similarly with the

rankings of the actual golden image scores. In other words, the worker’s lowest-scored golden

image should be the same image as the actual lowest-scored golden image, and the worker’s

second-lowest-scored golden image should be the same image as the actual

second-lowest-scored golden image, and so on and so forth. The alignment of rank orders can be

measured with the Spearman’s Rank Correlation Coefficient (SRCC) between the worker’s

scores for the golden images and the actual golden image scores. The SRCC is a constant

between -1 and 1, and if the worker’s SRCC score for golden images is below a certain

threshold, we will reject the worker. The threshold was determined by taking 5 golden images

whose scores are low in variance and contrasted in mean and then calculating the average SRCC

value over all participants in the golden image study.

8

The repeated images will be used for in-session rejection, where we notify the worker that they

failed our integrity checks halfway through the task (around image 30). The golden images will

be used for post-session rejection, which will occur after workers have submitted the task.

In-session rejection will have little negative consequences for both the team and the worker,

while the opposite is true for post-session rejection. The worker’s HIT approval rate will not

drop and the team’s rejection percentage will not rise if a worker is rejected in-session. On the

other hand, the worker’s HIT approval rate and the team’s rejection percentage will both increase

if they are officially rejected after the HIT is submitted.

We are using repeated images for in-session rejection and golden images for post-session

rejection because, according to Professor Bovik, repeated images are a stronger metric and will

be able to reject more people. The golden images are a weaker integrity check because the scores

were collected in lab-like conditions, which will differ from a typical MTurk worker’s

environment. Furthermore, the golden image checks will only be valid for the second slider

scores. This makes repeated images a more attractive method for in-session rejection since we

want to reject the most people in-session, where doing so poses the least amount of negative

consequences for both our team and the workers.

3.1.2 Neural Network Submodule

The NN submodule will have different types of inputs and outputs depending on the stage of the

project. During training, the NN submodule’s input will be the 8k training images and the

associated human-selected compression levels, and the submodule’s output will be the predicted

optimal compression level. The goal of training the network is to iteratively adjust the network’s

weights so that an image’s predicted compression level is close to its optimal compression level.

Once the network is trained, the network will be saved and then used to predict compression

levels for new candidate images. During this phase, the inputs will be a directory that contains

the images that the user wishes to compress optimally and a directory location to store the

results. The images cannot be too large (50MP) or too small (256 pixels by 256 pixels), but can

otherwise be any size. The outputs will be a file that contains the image names and the associated

9

predicted compression levels and, if specified, the optimally compressed images that have been

compressed with the predicted compression parameter.

As mentioned previously, there are multiple approaches to designing our neural network. We are

primarily considering two methods: constructing a custom model and transfer learning. The

former involves building a fully customized neural network and training all weights in the

network ourselves. We would have full control over the architecture and we would be able to

extensively finetune the network. However, the disadvantage is that we would need more

training images to train an accurate model, which is more expensive to acquire. Transfer

learning, on the other hand, involves using a pre-trained network, appending a few layers after it,

and training just the layers that we added to tailor the network to our specific task. The advantage

of transfer learning is that we would need to learn fewer model parameters compared to training

a fully custom network. Therefore, we would need less time, less computational resources, and

fewer training images and labels to train the entire network. The disadvantage, however, is that

we would lose some control over the architecture of the model.

Transfer learning is based on the assumption that the early layers of a network capture general

features of images, such as structures, that are useful in a wide range of learning tasks. In the

case of visual data, this relies on the assumption that the images of interest can be reduced to a

simpler, lower-dimensional representation without destroying the features of interest.

There are two common methods for transfer learning: finetuning and feature extraction. In

feature extraction, one typically removes the last fully connected layer of a pretrained network

and replaces it with a new randomly initialized fully connected layer with dimensions

corresponding to the new task. During training, the weights of all layers preceding the last are

held fixed; only weights of the new final layer are updated. In finetuning, one allows all of the

weights to be updated during the training stage. Some weights in the pretrained model can be

fixed, the number depending on the size of the new dataset to be trained on, the similarity of the

new and old datasets, and the similarity of the new and old tasks. An alternative to attaching a

10

fully connected layer at the end is attaching a Support Vector Machine (SVM). We plan to try

this as well.

One idea we have for building a custom neural network is to build a General Adversarial

Network (GAN) which differentiates between good and bad quality images (i.e. over-compressed

and well compressed images). A GAN has two parts, a generator and a discriminator. For our

purposes, the generator would learn to generate both good and bad quality images by

compressing images that we feed to it from our dataset to different levels. The discriminator

would learn to label these images as good or bad (optimally or non-optimally compressed) based

on human opinions of the optimal compression level that we feed it from our dataset. This GAN

could be used as a standalone network, but layers from the discriminator could also be used as

part of a transfer learning model.

3.2 Risk Reduction

We have conducted research and experiments and successfully determined the usability of TACC

for training our model, the inner workings of MTurk for data collection, and which deep learning

libraries and methodologies will be used for our final project. The following is what we have

done to accomplish this task:

1. As a team, we created an MTurk HIT page. We demonstrated that we could create a page,

display images, and implement a slider bar that controls the compression level of the

displayed image. The slider bar is a major feature of our HIT page, and demonstrating its

feasibility was very important to proving that we could create a viable MTurk study.

2. As a team, we trained small neural networks (both from pretrained models and fully

custom networks) on TACC using dummy data and LIVE Subjective Image Database. In

doing so, we are now able to train multiple neural networks in parallel through TACC.

With more trained neural networks readily available, we can see which of those networks

provide the best results - the optimal compression levels closest to those chosen by the

humans participating in our MTurk study.

11

3. As a team, we found sustainable storage and stored the 8k images we got from Professor

Bovik there. The images are stored in an Amazon S3 bucket and can be accessed and

displayed by the MTurk HIT page. Because of this, we can store a large number of data

points from the human study. There are storage and access costs associated with the

bucket, but current usage is low enough to qualify for free storage and cheap access costs.

The access costs are expected to increase during the duration of the MTurk study. Images

stored and accessed through S3 ensures that our HIT page can get the necessary data

efficiently for use when our human study begins.

4. Arkan gained access to TACC machines, installed deep learning packages there, and set

up his personal environment. All team members made TACC accounts and have been

able to log in to Maverick2, TACC’s dedicated deep learning machine. Also, the

members of the neural network subteam downloaded packages necessary for machine

learning. This allows us to build and train models seamlessly as we would have personal

hotkeys and shortcuts available in those machines. This ensures that the member’s TACC

accounts and machines have all the necessary resources and are ready to begin training as

soon as we have the human study data.

5. Brandon determined how to transfer data collected from MTurk to the TACC machines

and convert it to a form readable by the neural networks. The first step is to make sure the

necessary information is written to the output file. Then, after the study concludes, the

output file can be downloaded and transferred to TACC via the terminal for Linux or

MacOS or an ssh client for Windows. Because of this, we have a robust interface between

our MT module and NN module, which ensures the transfer of data between MTurk and

NN is smooth and efficient. For more details, see Appendix B.

6. Meenakshi experimented with a toy network with the LIVE Subjective Image Quality

Database. Using fast.ai, she appended a pre-trained network with some custom layers and

was able to get the network to converge. As a result, we determined the feasibility of our

project and know for certain that it can be done.

7. Kan determined how to compress an image on-the-fly to the specified compression level

while the slider bar is being moved. Kan’s risk reduction activity allows us to save money

12

on storage costs, since we will not have to precompress each image and store each copy.

Instead, we can store only the original and compress the image every time the slider is

moved. Furthermore, the HIT page will operate more smoothly, as the compressed image

that is displayed will update without requiring that the slider be released. This ensures

that we do not need a large amount of space in the S3 bucket for precompressed images,

allowing us to allocate more money and resources to the human study.

8. Akash experimented with transfer learning in Python. He used GluonCV to retrain an

object detection network so that it can predict an additional class. In doing so, we

familiarize ourselves with the implementation of transfer learning such that when we do

have to build the final model, we would encounter fewer obstacles along the way.

In doing activities 2 and 4, we have understood how to use TACC to train our models. This is

necessary as training a neural network with potentially millions of parameters requires a large

amount of computing power and time -- a task unfit for our laptops and home desktops. By doing

activities 1 and 3, we familiarized ourselves with MTurk and S3, both of which are a part of

Amazon Web Services. We also know how to bridge the data collection side and machine

learning side of our project through activity 5, which will prove to be important as any neural

network is as good as the data it is provided with. Completing activities 6 and 8 gave us insight

on how to create a model that will satisfy the project requirements as defined by Professor

Bovik. By experimenting with PyTorch, fast.ai, and GluonCV, we have gained more intuition on

transfer learning and how we can reap its benefits for our project. After comparing the libraries,

we have decided to use PyTorch as our library of choice due to its extensive documentation and

ease of use. GluonCV has limited functionality and fast.ai is less widely used and hence has less

useful documentation.

3.3 Test Plan

We will break down our test plan into two components for the two submodules. For the MT

submodule, our criteria for success would be to obtain data from those who took our HIT page

seriously instead of obtaining data from those who put minimal effort just to get easy money.

13

Before we launch the true human study on MTurk, we would first run a smaller human study

with golden images and repeated images incorporated into the HIT page to see whether our

measures to counter falsifying data works and if there may be concerns regarding our study.

After we determined the effectiveness of those countermeasures and addressed any issues, we

would then launch the real human study.

As for the NN submodule, our criteria for success would be whether our model can accurately

predict the correct JPEG compression level based on human perception. To test this, we will

partition our collected MTurk data into two types: training data and test data. We will use the

former to train our model and then confirm its accuracy on data the model has not seen before

using the latter. 80% of the collected MTurk data will be used as the training data, and the

remainder will be used as the test data. In our testing phase, we will input the test data into the

neural network, carefully keeping track of the human scores of each image and the output scores

from our model. If our model can predict the correct compression level of all the test data images

with an accuracy above 90%, then our model is successful in its task. Furthermore, we consider a

predicted compression level to be correct if it is within +/- 3 quantization levels from the true

value, and we define accuracy to be the number of correctly predicted compression levels

divided by the total number of test images. If the trained network failed to achieve this level of

accuracy, then we would have to modify our model and train our model again until it does satisfy

that criteria.

Once we have thoroughly tested the MT and NN submodules, we will test the entire system as a

whole. Since our solution is designed to compete with other forms of image compressors, we

will also compare the performance of our final predictor with pseudo-perceptual metrics such as

SSIM. Our comparison will involve feeding the same images into the two predictors and

comparing the results of the images. If the compressed images that are produced by our design

solution are on average 5% smaller than images compressed using the SSIM standard, then we

will define the test as being successful. The images that we will use for this test will be high

quality images since SSIM is a reference metric that compares the luminance, contrast, and

14

structure of small windows across the two images [3] and assumes that the input images are high

quality images. Our predictor will also be trained on high quality images, which is ideal for the

comparison test.

4.0 PROJECT MANAGEMENT

In order to begin training and testing our model, we need to start collecting data. However,

before we open up our HIT on MTurk, we need to collect scores for the golden images by doing

a human study. This is the first thing we will do next semester. Additionally, we will need to

finalize the HIT instructions based on feedback from participants from the golden image study.

Initially after posting our HIT, we will have to monitor the responses to make sure everything is

going smoothly. We need to make sure that the golden images are doing their job, preventing

people from just selecting random levels, and that the instructions are being interpreted correctly.

Once we have confirmed that we are collecting good quality data that conforms to our metrics,

we will set up a pipeline that feeds it to the TACC computers where the neural network is being

trained and tested. During training and testing, if the neural network group finds any issues with

the data or identifies any changes to the HIT that could potentially improve performance, they

will need to relay this information to the MTurk team.

We will continue to refine our neural network until it meets our standard of outperforming

similar models trained on scores generated using SSIM. We will need to experiment with

different base models and different transfer learning methods to achieve good performance.

4.1 Project Activities

Since our project has two submodules, we will split our work resources evenly between the two

submodules MT submodule and NN submodule as described in our work breakdown structure

(WBS) in appendix C. What should be noted is that only the MT submodule will use all of the

budget as we must employ MTurk workers for the study and allocate space within Amazon S3.

Under the MT submodule, there is the MTurk Human Study and the S3 Storage. Under the

15

MTurk Human Study, we must plan the golden image study, conduct that study, design the HIT

page for the MTurk study, build the algorithm that selects which images are presented to the ones

undertaking the study, and conducting the study. Designing the HIT page involves designing the

mechanism for randomly and uniformly choosing images from the S3 bucket, the specific text

instructions that will be displayed to the user, the mechanism of clicking “submit” and showing

another image, and the mechanism of stopping a task early if the user fails too many integrity

checks. Under the NN Submodule, we must create the model, train it, test it, and build the GUI

and CLI. Lastly, under the Model Creation, we must utilize pre-trained models for transfer

learning and develop the custom model that will be appended to those models.

In regards to the MT submodule, S3 only takes up 5% of work because setting it up is almost

trivial in comparison to getting MTurk set up and working. If we go down another level from

MTurk Human Study and compare Conduct Human Study and Golden Image Study, one can see

that Golden Image Study takes up 15% of work while Conduct Human Study takes up 20%. This

is the case because we do not need to intensive integrity checks in the Golden Image Study

whereas in the Conduct Human Study, it is vital to have them. Also, due to the difference in

magnitudes, the Conduct Human Study must be treated with absolute care. The other two parts,

Designing HIT Page and Image Selector, pertain to the structure of the study itself and how it

will determine which images the participants will need to score.

As for the NN submodule, Training and Testing take up an equal amount of work since they

draw their data from the same pool (i.e. data from MTurk). Model Creation will take up the most

work since we would first lay out the initial architecture and then optimize our model depending

on our results from Training and Testing. Optimizations would come from Transfer Learning and

Custom Model as we try to find the best configurations between the existing transfer learning

models and our custom-built model. Custom Model will take up twice the amount of work as

Transfer Learning as creating a custom model is more hands-on than picking the best

pre-existing model as our base.

16

4.2 Task Assignments

The tasks listed in the Linear Responsibility Chart can be divided amongst the MTurk and Neural

Network subteams (see Appendix D). Each team member is responsible for their own task. For

the most part, the other members of the relevant subteam will be consulted, while the other team

members will either be accountable or informed of the task.

We conducted human studies to collect compression scores for the golden images. All team

members recruited friends and family members to participate in the studies. Initially, we

conducted a study from Monday, February 10th to Tuesday, February 18th with 19 participants.

However, we made a mistake when constructing the study and only showed subjects the lower

half of the available compression levels. The levels range from 0-100, but we only showed them

levels 0-50. We fixed the error and conducted a second golden study from Monday, February

17th until Friday, February 21st with 20 participants. We are using the results from the second

golden study in our final HIT page that we will deploy on MTurk on Wednesday, February 26th.

Most of the HIT page has already been built, so we only need to finalize the instructions and test

the page before we deploy the study. This should be completed soon, with a target deadline of

February 28th. Brandon and Kan have worked most on the HIT page, so they will be responsible

for its construction and for selection of images. Akash has also worked on the page, so he can be

consulted. Kan will be held responsible for both of these tasks because he is in charge of the

funds for the crowdsource study.

Akash, Brandon, Arkan, and Meenakshi all have experience with or interest in machine learning,

so they will all work on the pretrained model for which Brandon will have final responsibility.

Arkan and Meenakshi will work on building the custom neural network as they have both

expressed interest in this task. Meenakshi will be held accountable because she has experience

building neural networks from scratch. One of the models will likely be abandoned if it proves to

17

be weaker than the other. The remaining one needs to be finished by the beginning of May before

the end of the course.

4.3 Project Schedule

Our schedule for next semester is detailed in our Gantt chart in Appendix E. In the first 3 weeks

of the spring semester, from Monday, January 20 to Monday, February 10, we will plan the

golden image study. At the same time, we will prepare the HIT page and everything that is

needed to run the MTurk study, like storing the 8k images in an Amazon S3 bucket and writing

the code that chooses which images will be shown in each HIT. We originally planned to start the

golden image study on Monday, February 10, but after completing the study we realized that we

made a mistake, and needed to conduct the study again from the beginning. As a result, we

updated the Gantt chart to include a Golden Image Study II task, which ran from Monday,

February 17 to Friday, February 21. After that, we planned to deploy the HIT page and conduct

the human study on Monday, February 24. At this point, the NN subteam will also begin working

on designing models. The human study will run for 3 weeks. On March 1, members of the

MTurk subteam will start coding the GUI/CLI, since at this point we expect the study to be

running fairly smoothly and will require less oversight. At the same time, the NN subteam can

begin training, since we will have collected some data at that point. Model creation and training

will continue until April 1, at which point most of the NN subteam will begin to focus more on

testing the models and evaluating performance. We plan to begin wrapping up the project by the

end of April.

4.4 Project Budget

Professor Bovik has agreed to provide $5000 in funding for our project. The only major expense

for our project is paying the MTurk workers for completing our HIT (see Appendix F). A

second, negligible expense is the cost of sustainable storage for the 8k images that will be used in

the MTurk study. We aim to collect 30 responses for each of the 8460 images in the 8k dataset,

18

and we will collect 50 responses total per HIT, so we will need to fund at least 5076 HITS. We

plan to pay $0.75 per HIT, so we have budgeted $3807 for paying workers. The other expense

for our project is the cost of storing the 8k images in a location that is stable and accessible from

the HIT. Using Amazon’s own pricing calculator, the cost for S3 storage is expected to be no

higher than $0.53 (see Figure 3). Note that the number of PUT and GET requests are estimates of

expected usage plus a guardband, so the actual storage cost will likely be lower. We chose

Amazon S3 for our sustainable image storage since both S3 and Mechanical Turk are part of the

Amazon ecosystem. S3 is reliable, and we have verified that images stored in an S3 bucket can

be displayed in an HIT.

Figure 3. Pricing Calculator for S3 Storage

5.0 CONCLUSION

We have gone into detail the criteria of a successful image compressor and have explained the

motivations, methods, goals, target users, and challenges regarding the design. We have shown

the feasibility of our design through our risk reduction research, experiments, and activities,

which further ensure the success of our project. Two of those risk reduction activities were

designing the HIT page and training multiple neural networks in parallel. Designing the HIT

page gave us the necessary intuition on how the data can be collected using MTurk as well as

verify that an image compression slider can be implemented in real-time on the page. Similarly,

training multiple neural networks in parallel proved to us that we can test and consider many

neural networks with the given time remaining to complete our project. We have a

comprehensive plan, schedule, budget, and list of materials for our project that will guide and

constantly push us forward.

19

Through these topics we have covered, it is clear we prepared a strong foundation for the

semester to come. As previously mentioned, our plan is to spend a month each to conduct the

MTurk study starting on February 1st and begin training our models starting March 1st. We will

also evaluate our models on April 1st, and finally wrap up the project by the end of the month.

However, these dates are not set in stone and can be shifted to accommodate certain changes. For

example, if the MTurk data collection process is taking longer than we anticipated and given that

we have constructed a working model, we can accommodate by training our models in

conjunction with the data collection since the two processes do not necessarily have to be

executed linearly. Inversely, if we are able to collect MTurk data very quickly, all of the timeline

can be shifted forward, which may create more time for testing and improving the GUI or project

presentation. If all activities are executed on schedule and we complete each milestone according

to our plan, then we are sure to create a strong image compressor.

REFERENCES

[1] Lin, Weisi, and C-C. J. Kuo. "Perceptual visual quality metrics: A survey." Journal of
visual communication and image representation 22.4, 2011, pp. 297-312.

[2] Mazen Abuzaher, Jamil Al-Azzeh (2017). JPEG Based Compression Algorithm.
International Journal of Engineering and Applied Sciences, 4(4), pp.95-97.

[3] Wang, Z., Bovik, A., Sheikh, H. and Simoncelli, E. (2004). Image Quality Assessment:
From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing,
13(4), pp.600-612.

[4] CCITT Study Group VIII and the Joint Photographic Experts Group. T.81 – DIGITAL

COMPRESSION AND CODING OF CONTINUOUS-TONE STILL IMAGES –

REQUIREMENTS AND GUIDELINES" (PDF). CCITT. September 1992. Retrieved 25

February 2020.

20

https://en.wikipedia.org/wiki/CCITT

APPENDIX A: RELEVANT STANDARDS

21

In 1992, the Joint Photographic Experts Group published the JPEG standard, which sets out

guidelines and requirements for encoding and decoding of continuous-tone still images [4]. It

specifies the processes for compressing a source image, storing compressed image data, and

reconstructing an image from compressed image data.

22

APPENDIX B: RISK REDUCTION ACTIVITY DOCUMENTATION

23

Activity 5 Documentation: MTurk to TACC

1. When creating the MTurk page, make sure that the image name is written to the output
.csv file by inserting a hidden crowd-input element with the name of the displayed image.
This can be accomplished in Javascript by placing the following line in a
<script></script> block:

document.write("<crowd-input name='img_name' value=" + name_of_image + "
type='hidden'></crowd-input>");
where “name_of_image” should be replaced with the actual name of the image. This line
will result in an “Answer.img_name” column in the output .csv file.

Note that the columns with the “Answer.” prefix are values provided by the MTurk workers.

24

2. Go to the MTurk Requester portal, go to the “Manage” tab, and select the MTurk HIT.

3. Click on “Results”, click on “Download CSV”, and then download the .csv file. Save the
file to a location where you can find the file again.

25

4. Transfer the file from your local system to Maverick2 on TACC. On Windows, this can
be accomplished using an ssh client. On MacOS and Linux, this can be accomplished in
the terminal. Run the command:

scp file_path [tacc_username]@maverick2.tacc.utexas.edu:dest_file
Enter in your TACC credentials when prompted.

26

5. Move the file to a location in TACC where the team can access the file.

27

APPENDIX C: WORK BREAKDOWN STRUCTURE

28

29

APPENDIX D: LINEAR RESPONSIBILITY CHART

30

Task Akash
Shukla

Arkan
Abuyazid

Brandon
Lee

Kan
Vanthanasuksan

Meenakshi
Swaminathan

Conduct
Golden
Image Study

R R A R R

Construct
HIT Page

C I R A I

Select Images
for HIT

C I R A I

Build Custom
Network

C R C I A

Transfer
Learning

R R A I R

R=Responsible, A=Accountable, C=Consulted, I = Informed

31

APPENDIX E: GANTT CHART

32

33

APPENDIX F: BILL OF MATERIALS

34

Item to
Purcha
se

Description Amount
Needed

Estimated
Cost

Performance
Criteria

Total Cost

MTurk
HITs

Pay Turk
workers to
complete our
HIT

5076 HITs $0.75/HIT HITs need to pass
integrity checks.
Will not pay
workers that fail
checks.

$3807

S3
storage

Pay for S3
bucket to
store the
images that
will be
displayed in
our HITs

Storage,
database
operations for
8529 images
and
miscellaneous
files.

$0.53 Need to be able to
efficiently and
reliably access
images in the
bucket from the
HIT page.

$0.53

Total cost: $3807.53

35

