
Inverse Cooking: Recipe Generation from Food
Images

Vasundhara Venkata Krishna
CIDSE

Arizona State University
Tempe, Arizona

vvvenka1@asu.edu
ASURITE: 1218418357

Arkan Abuyazid
CIDSE

Arizona State University
Tempe, Arizona

aabuayz1@asu.edu
ASURITE: 1219636340

Naga Sai Aishwarya Tallapragada
CIDSE

Arizona State University
Tempe, Arizona
ntallapr@asu.edu

ASURITE: 1218515961

Abstract—Food recognition challenges current computer vi-
sion systems to go beyond the merely visible. When compared
with natural image understanding, visual ingredient prediction
requires high-level reasoning and prior knowledge. This poses
additional challenges, as food components have high intra-
class variability, heavy deformations occur during cooking, and
ingredients are frequently occluded in a cooked dish. Generally,
the problem has been formulated as a retrieval task, where a
recipe is retrieved from a fixed dataset based on the image
similarity score. But these systems fail when a matching recipe
for the image query does not exist in the static dataset. We
propose to study an inverse cooking system that given images
of prepared dishes, recreates the respective recipes. This system
will predict ingredients as sets by modeling their dependencies
without imposing any order. Then, the system will generate
instructions conditioned on images and inferred ingredients.
Finally, we will demonstrate the superiority of the system against
state-of-the-art image-to-recipe retrieval approaches.

Index Terms—Computer Vision systems, food, food recogni-
tion, prediction, dataset

I. INTRODUCTION

The sharing of food has brought people together since
the beginning of time. It’s how we make friends, nurture
relationships, celebrate milestones, mend conflicts and feel
gratitude for life. Food helps us create memories. People enjoy
food photography because they appreciate food. Behind each
meal there is a story described in a complex recipe. Recreating
those recipe for our friends or family is a way to re-live
those memories. In the past, food was mostly prepared at
home, but nowadays we frequently consume food prepared
by third parties (e.g. takeaways, catering and restaurants).
Thus, the access to detailed information about prepared food
is limited and, as a consequence, it is hard to know precisely
what we eat. Therefore, we argue that there is a need for
inverse cooking systems, which are able to infer ingredients
and cooking instructions from a prepared meal.

Traditionally, the image-to-recipe problem has been formu-
lated as a retrieval task, where a recipe is retrieved from a fixed
dataset based on the image similarity score in an embedding
space. The performance of such systems highly depends on
the dataset size and diversity, as well as on the quality of the
learned embedding. Not surprisingly, these systems fail when a
matching recipe for the image query does not exist in the static

dataset. An alternative to overcome the dataset constraints of
retrieval systems is to formulate the image-to-recipe problem
as a conditional generation one. Therefore, in this paper, we
present a system that generates a cooking recipe containing
a title, ingredients and cooking instructions directly from an
image. The system first predicts ingredients from an image
and then conditions on both the image and the ingredients to
generate the cooking instructions.

The main scope of this project is Computer Vision and
Image analysis. Image analysis is the extraction of meaningful
information from images; mainly from digital images by
means of digital image processing techniques. Image analysis
tasks can be as simple as reading bar coded tags or as
sophisticated as identifying a person from their face. Computer
vision is a field of artificial intelligence that trains computers to
interpret and understand the visual world. Using digital images
from cameras and videos and deep learning models, machines
can accurately identify and classify objects — and then react
to what they “see.” Computer vision seeks to understand and
automate tasks that the human visual system can do, and a bit
more!

In this paper we study the instruction generation problem
as a sequence generation conditioned on the two methods
image analysis and its predicted ingredients. We extensively
evaluate this system on the large-scale Recipe1M dataset that
contains images, ingredients and cooking instructions, showing
satisfactory results.

II. METHODS

Generating a recipe (title, ingredients and instructions) from
an image is a challenging task. It requires an understanding
of the ingredients composing the dish and the transformations
the ingredients went through, e.g. slicing, blending or mixing
with other ingredients. Instead of obtaining the recipe from
an image directly, the recipe generator would work better
if predicting the ingredients list is added as an intermediate
step. The sequence of instructions would then be generated
conditioned on both the image and its corresponding list
of ingredients. The interplay between image and ingredients
could provide additional insights on how the ingredients were
processed to produce the resulting dish. The recipe generation

system takes a food image as an input and outputs a sequence
of cooking instructions, which are generated by means of an
instruction decoder that takes as input two embeddings. The
first one represents visual features extracted from an image,
while the second one encodes the ingredients extracted from
the image. The Recipe Generator Model can be visualized as
shown in Figure 1.

Fig. 1. Recipe Generation Model

The Recipe Generator is a transformer based model and it
includes the following components:

• Image Encoder.
The image encoder is parametrized by θI and used for
extracting the visual features eI of an image. This process
is called as image feature extraction.

• Ingredient Decoder.
Ingredient decoder is parametrized by θL. This decoder
takes the image features eI as input and predicts the
ingredients.

• Ingredient Encoder.
The predicted ingredients from the ingredient decoder are
encoded into ingredient embeddings eL. This Ingredient
Encoder is parametrized with θe.

• Instruction Decoder.
The Instruction Decoder is parametrized with θR. It
takes image embeddings eI , ingredients embeddings eL
and previously predicted words (r1, r2,rt−1) as input
and produces a sequence of cooking instructions R =
(r1, r2,rT) where rt denotes a word in the current
sequence.

The output of the recipe generator is a cooking recipe
containing a title, ingredients and cooking instructions directly
from an image. An example of the output is as given in Figure
2.

Fig. 2. Example output of Recipe Generator

A. Recipe Generation Model

Understanding the instruction decoder and ingredient de-
coder in depth.

• Cooking Instruction Transformer(Instruction Decoder).
The sequence of instructions r1, r2,rT is produced
by with the help of an instruction transformer. The title
is predicted as the first instruction. This transformer is
conditioned jointly on two inputs: the image representa-
tion eI and the ingredient embedding eL. The instruction
decoder is composed of transformer blocks, each of
them containing two attention layers followed by a linear
layer. The first attention layer applies self-attention over
previously generated outputs, whereas the second one
attends to the model conditioning in order to refine the
self-attention output. The three different fusion strategies
are:

1) Concatenated Attention. This strategy first concate-
nates both image eI and ingredients eL embeddings
over the first dimension econcatεR

(K+P)de . Then,
attention is applied over the combined embeddings.

2) Independent Attention. This strategy incorporates
two attention layers to deal with the bi-modal con-
ditioning. In this case, one layer attends over the
image embedding eI , whereas the other attends
over the ingredient embeddings eL. The output of
both attention layers is combined via summation
operation.

3) Sequential Attention. This strategy sequentially at-
tends over the two conditioning modalities. In this
design, the following orderings are considered: 1st

image first where the attention is first computed
over image embeddings eI and then over ingredient
embeddings eL; 2nd ingredients first where the
order is flipped and we first attend over ingredient
embeddings eL followed by image embeddings eI .

• Ingredient Decoder. The ingredients can be represented
as either a set (where the order of ingredients does
not affect the outcome) or a list (where the order of
ingredients does affect the outcome). Models that work
either with a list of ingredients or with a set of ingredients
is discussed belo:.

1) Ingredients List
A list of ingredients is a variable sized, ordered
collection of unique meal constituents. A dictionary
of ingredients of size N is defined as D = {di}Ni =0.
From which we can obtain a list of ingredients L by
selecting K elements from D : L = {li}Ki =0. Then
L is encoded as binary matrix L of dimensions K ×
N with Li = 1 if djεD is selected and 0 otherwise.
The training data consists of M image and ingredient
list pairs {x(i), L(i)}Mi =0. The goal is to maximize
the following objective:

argmaxθI ,θL

M∑
i=0

logp(L̂(i) = L(i)|x(i); θI , θL)

where θI and θL represent the learnable parame-
ters of the image encoder and ingredient decoder,
respectively. Since L denotes a list, p(L̂(i) =
L(i)|x(i)), it can be categorized into conditionals.
In theory, these conditionals are usually modeled
with auto-regressive (recurrent) models. In this ex-
periment as well the transformer model is chosen.
A potential drawback of this formulation is that it
is inherently penalized for order, which might not
necessarily be relevant for ingredients.

2) Ingredients Set
A set of ingredients is a variable sized, unordered
collection of unique meal constituents. A set of
ingredients S is obtained by selecting K ingredi-
ents from the dictionary D : S = {si}Ki =0. S
is represented as a binary vector s of dimension
N, where si = 1 if siεD, and 0 otherwise. The
training data consists of M image and ingredient
list pairs {x(i), s(i)}Mi =0. The goal is to maximize
the following objective:

argmaxθI ,θL

M∑
i=0

logp(ŝ(i) = s(i)|x(i); θI , θL)

The elements inside the set can be assumed to be
independent of each other but this will not be the
case all the time eg. salt and pepper frequently
appear together.

B. Training Method

As seen earlier, ingredient set model will have dependen-
cies among its elements. To account for the dependencies,
ingredient list model can be used. But the drawback of this
approach is that such a model is penalized for order. In order
to remove the order in which ingredients are predicted, the
outputs are aggregated across different time-steps by means
of a max pooling operation(Softmax probabilities are pooled
across time to avoid penalizing for order). To ensure that the
ingredients in L̂(i), are selected without repetition, the pre-
activation values are set to −∞ for all previously selected
ingredients before time-step k. This model is trained by
minimizing the binary cross-entropy between the predicted
ingredients (after pooling) and the ground truth. Including the
eos(the last output from ingredient decoder) in the pooling
operation would result in loosing the information of where the
token appears. Therefore, in order to learn the stopping criteria
of the ingredient prediction, an additional loss accounting for it
is introduced called the eos loss. The eos loss is defined as the
binary cross-entropy loss between the predicted eos probability
at all time-steps and the ground truth (represented as a unit step
function, whose value is 0 for the time-steps corresponding to
ingredients and 1 otherwise). In addition to that, a cardinality
l1 penalty is incorporated, which is useful empirically. This
model is referred to as set transformer (TFset). The recipe
transfomer is trained in two stages: In the first stage, the
image encoder and ingredients decoder are pre-trained. Then,

in the second stage, the ingredient encoder and instruction
decoder are trained by minimizing the negative log-likelihood
and adjusting θR and θE where θR and θE are learnable
parameters.

C. Dataset Description

The training and evaluation of the models are performed
on Recipe1M dataset. The Recipe1M dataset is consists of
1,029,720 recipes scraped from cooking websites. The dataset
contains 720,639 training, 155,036 validation and 154,045 test
recipes. Each of them containing a title, a list of ingredients,
a list of cooking instructions and (optionally) an image. Out
of which, only the recipes containing images are used, and
recipes with less than 2 ingredients or 2 instructions are
removed. Which results in 252,547 training, 54,255 valida-
tion and 54,506 test samples. The dataset was generated
by scraping cooking websites, resulting in recipes that are
highly unstructured and contain frequently redundant or very
narrowly defined cooking ingredients (e.g. olive oil, virgin
olive oil and spanish olive oil are separate ingredients). The
ingredient vocabulary contains more than 400 different types
of cheese, and more than 300 types of pepper. As a result,
the original dataset contains 16,823 unique ingredients, which
we preprocess to reduce its size and complexity. First, the
ingredients which share first or last two words are merged
(e.g. bacon cheddar cheese is merged into cheddar cheese);
then, the ingredients that have same word in the first or
in the last position are clustered (e.g. gorgonzola cheese or
cheese blend are clustered together into the cheese category);
finally the plurals are removed and ingredients that appear
less than 10 times in the dataset are discarded. Altogether,
the ingredient vocabulary is reduced from over 16k to 1,488
unique ingredients. For the cooking instructions, the raw texts
are tokenized and the words that appear less than 10 times
in the dataset are removed and replaced them with unknown
word token. Special tokens are added for the start and the end
of recipe as well as the end of instruction. This process results
in a recipe vocabulary of 23,231 unique words.

D. Performance Evaluation Methods

In our report we are using Accuracy, F1 Score and IoU to
evaluate our model. Accuracy is one of the simplest form of
evaluation metrics. It tells that overall how often the model is
making a correct prediction. F1 Score is the weighted average
of Precision and Recall. This score takes both false positives
and false negatives into account. The F1 Score lies between
0 and 1. Higher the F1 score, higher the precision, better the
model. The Jaccard index, also known as the Jaccard similarity
coefficient, is a statistic used for gauging the similarity and
diversity of sample sets. The Jaccard coefficient measures
similarity between finite sample sets, and is defined as the
size of the intersection divided by the size of the union of
the sample sets. Jaccard coefficient is also called as IoU
(intersection over union). Higher the Jaccard % more the
similarity. These evaluations are performed for the ingredients
in the cooking instruction.

III. IMPLEMENTATION AND SIMULATION

While attempting to recreate the results provided by the
main paper [1], our approach deviated mostly from the one
mentioned in the GitHub repository due to some hardware
and software constraints.

To start off the dataset used to train the model is Recipe1M
[2], which is a dataset containing about 1 million images, and
hence nearly 180 GB in size. Since the size of the dataset was
to big to be installed on our personal laptops, we decided to
use ASU’s Agave Cluster to carry out the training, validation
and testing of the model.

The dataset is not quite readily available, so we were able
to gain access to it after requesting for the dataset from one
of the authors of the main paper [1]. These files were then
downloaded and unzipped in Agave’s scratch folder. We also
cloned the GitHub repository [3] into the scratch folder in
Agave. Next we installed all the software required that was
mentioned in the requirement.txt file using the command given
in the GitHub read.me . When using ASU’s Agave Cluster, to
execute anything on the compute node, we need to submit an
SBATCH job. The training of the model required following
these 4 main steps i.e.

1) Building the required vocabulary files of the ingredients
and the recipes

2) Converting the image to LMDB
3) Training the model to predict ingredients from images
4) Training the generate recipes from images and ingredi-

ents
So to execute each of these processes, we needed to submit

a new sbatch job to the Agave clusters. The exact code that
was executed in the batch jobs will be given in the glossary. To
build the vocabularies we used 2 GTX1080 GPUs with 40 GB
memory and gave a time limit of 1 day for this job. In 12 hours
the vocabularies were built. Next we again ran a batch job with
same specifications for another 1 day to convert the images to
LMDB. This job was completed in 4 hours. Finally we moved
to training the model to predict ingredients from images. We
initally used 2 GTX1080 GPUs with 40 GB memory and gave
a time limit of 1 day for this job and ran the batch job. After
5 minutes of running we got an out of memory error. We
simply assumed this was an issue with the amount of memory
allocated so we increased the memory from 40 GB to 60 GB
and ran the job again. This again resulted in failure due to an
out of memory error.

At this point there were other computing nodes available in
Agave that provided more memeory, and we simply deduced
that we needed to first try using the one with great memory.
We then ran the job using 2 Tesla K80 GPUs with 120 GB
memory allocated. This again failed with the same error. When
executing the python statement to train the model, we can
specify the num workers or the number of parallel threads
that can run to execute the code. By default the code used 8
workers, but while going through the error log for the sbatch
job, we noticed that all the workers were using around 40 GB
of memory. This was strange for us because we were not able

to train dude to insufficient memory is what the sbatch job
claimed.

So after doing some more research we identified that some
data structures take up more memory during run time as
opposed to others. One such data structure was lists, we then
decied to identify where all lists were being used in the training
process, and wanted to see if we could make some code
changes. The main train.py file was calling data loader.py
which was loading all the data from the pickled vocabularies
and dataset. data loader.py was mainly using lists, hence we
changed all those to numpy arrays. We also found out that
sometimes data deadlocks occur when multiple workers are
used when using the pytorch dataloader library. This is not be
confused with data loader.py, which is a python file used to
load the required data. To avoid the dead lock of data, we ran
the training with 1 worker. The specifications of this job were
the same as before but to be on the safe side we ran it for 3
days.

The job finally ran without the out of memory error, but
it was immensely slow, it took 3 days to complete around
6 epochs of the first training. This was a training that was
supposed to be running for 100 epochs, we then just ran
the second training to generate recipes from images and
ingredients while we brainstormed on how to approach this
next.

At this point we had gone through all the possible avenues
to decrease the amount of memory that was being used while
training the model. We then started looking into the possibility
of training the model but on a smaller dataset. The size of the
dataset we decided should be small enough that it would run
without any out of memory error, but it shouldn’t be too small
such that we receive no coherent results. We decided to scale
down the dataset to a total of 7,215 images with 5061 images
for training, 1065 images for testing, and 1089 images for
validation. So to give a brief insight into how we arrived at
this number, we went through the structure of the dataset. The
dataset has a tree structure to the folders, where there are 15
main folders each containing 15 sub folders. This structure
is followed till the essentially the root folders contain just 2
images. Due to this excellent structuring of the images, we
then decided to use the images in the first two folders 0 and
1, thus reducing our dataset to nearly 10000 images.

Once we had decided to proceed with this idea, we now
had the issue of creating the smaller dataset. This was not a
simple issue of removing some folders from the data folder,
because the data was read based on the pickled data set, not
based on the number of images available. Hence we had to
first figure out a way to extract only the required images from
the dataset pickle files and create our own. We had to write
new code in python which we called newfile.py and ran a new
sbatch job called newfile.sh. Upon running this file, we then
had to change all the lines of code that referred to or were
working with the old pickle files, so that our new pickle file
would be used instead.

Once we made the required changes in train.py and sam-
ple.py we now ran the model training again, with 2 Tesla K80

GPUs with 120 GB memory with a batch size of 75, number
of epochs as 100 and num worker as 1 for a time limit of 1
day. The training the model to predict ingredients from images
took 6 hours to complete and only ran for 62 epochs, not a
100. This was because of a check placed in the training code
to prevent the model from over fitting. We then ran another
sbatch job with the same specification to train the model to
generate recipes from images and ingredients. This training
took around 5 hours and ran for 52 epochs. Finally we ran the
sbatch job executing the file sample.py which gave us the F1,
accuracy, jaccard and F1 ingredients score for our model.

But to obtain recipes generated from the model, the original
code in github was given as a jupyter notebook. We cannot
execute this in Agave, hence we had to then convert the
code given in the jupyter notebook to a python file. Once we
coverted this, we had to run it using another sbatch job. Also
since this was not a jupyter notebook, the output file would not
display the images for which the corresponding recipes were
being generated. Hence we printed out the image file name,
before we printing out the recipes. We then complied all the
outputs we wanted into a format of image and corresponding
recipe to add to the report. The model give around 4 recipes
for a certain image and it also prior to providing the recipe
tells us if the recipe is valid or not. It tells if its valid or not
depending on the similarity of the image ingredients and the
recipe steps.

IV. RESULTS

We first used the test set of images provided in the scale
down version of the dataset to evaluate our model on the
following metrics and obtained the corresponding values as
shown in Table I:

Table I
Evaluation Metrics Our Model PreTrained Model

Accuracy 0.99404 0.8033
F1 Score 0.3510900 0.4861

F1 ingredients 0.006099 0.4908
IoU 0.212922510 0.3180

We observe that the accuracy obtained for the model is very
high, this might imply that the model is slightly over-fitted.
If we were to run this model again, we would less than 50
epochs around 20 to 30 epochs so as to avoid over-fitting.
This accuracy is also higher than that of the pretrained model
provided by Facebook research team. The F1 score of the
model is pretty low compared to the F1 score of the pretrained
model which had an F1 score of 0.4861. The jaccard metric is
also called the IoU score. It measures the similarity coefficient
score. The IoU score of our model is slightly less than that of
the pretrained model which had a IoU score of 0.3180. The F1
score for the ingredients obtained for our model is extremely
very low compared to that obatined for the pretrained model,
which had a F1 score for ingredients as 0.4908. The model
will first decode the ingredients from the images and train on
those ingredients. As we used a smaller dataset, the number
of ingredients that it was able to decode and train from greatly

decreased, hence it was not able to accurately identify all the
required ingredients.

To understand intuitively how well or how bad our
model(trained on a smaller dataset) performed, we tested both
the our model and the pretrained model on a set of images
to see what kind of recipes they would produce. Through
this exercise we were able to understand intuitively what
influenced the training of the model, and if the results we
obtained made sense. The images we used for this are the
following

1) Enchiladas
2) Vada
3) Fish swimming in water
4) The Red Rocks

The recipes generated for the each of these images by our
model trained on the smaller dataset and the pretrained model
are shown in figures 3, 4, 5, and 6 for the images respectively.
Our model in terms of ingredient prediction is pretty close
to that of the pretrained model. If we observed the results
obtained of the red rocks which the pretrained model be-
lieves to be peanut butte cookies, the ingredients generated
by our model is very close to the ingredients predicted by
the pretrained model. As similar theme is observed in the
results comparison of all these images. We also felt that if we
had trained our model on a more diverse dataset of images,
encompasing dishes from all portions of the world, it would
in turn be able to predict the ingredients more accurately for
dishes like Vada, which is a traditional Indian dish.

Fig. 3. Chicken Enchiladas

V. DISCUSSION AND CONCLUSION

We expected our results to perform poorly compared to
Facebook’s Recipe1M-trained generative model. However,
while our model did not perform as well, we can see how
accurate it was in generating ingredients for each recipe
considering the much smaller dataset it was trained with. In
fact, even the recipe generated by our model, although very
rough and unspecific, reflected our model’s ability to recognize
how these ingredients should combine together.

Fig. 4. Aquarium

Fig. 5. Grand Canyon

What’s also interesting to note is that our model did not
attempt to title dishes with specific names but rather with
vague descriptions. We expected the dish naming to be similar
to the Facebook’s model’s the model attempts to name the dish
presented in the image. This highlights the difference between
a retrieval-based model versus a generative-based model. If our
model was a retrieval-based model, then it would have tried
to pick a recipe from its limited dataset that has the highest
correlation with its given image and output that recipe no
matter how low that correlation is. Instead, our model decided
that it did not have enough information to confidently name
the dish in the given image a specific name hence the vague
description. The reason why Facebook’s model outputted a

Fig. 6. Sambar Vada

specific name for each dish was because it had access to a
larger pool of information (e.g the entirety of Recipe1M).

Highlighting the difference between generative models and
retrieval models may be the key takeaway from this project.
In order for the field of the computer vision to progress, we
cannot allow the model to be limited by its given dataset. Fu-
ture models tackling similar problems to Inverse Cooking must
be able to create their own inferences instead of regurgitating
results from a dataset.

Future work that we can do for this project is run two
different transfer learning models. We would try to train the
model on MobileNet since it is targeted towards edge devices
like embedded systems and mobile phones. We would also try
to train the model on ResNext as it aims to go wide rather
than deep. Better recognition may provide better recipes. We
also would like to train all of these models, both new and old,
on Recipe1M+ to see if training on a larger dataset provide
better recipe generation.

REFERENCES

[1] A. Salvador, M. Drozdzal, X. Giró-i-Nieto, and A. Romero,
“Inverse cooking: Recipe generation from food images,”
CoRR, vol. abs/1812.06164, 2018, [Online]. Available:
http://arxiv.org/abs/1812.06164.

[2] Marı́n, Javier Biswas, Aritro Ofli, Ferda Hynes, Nicholas Salvador,
Amaia Aytar, Yusuf Weber, Ingmar Torralba, Antonio. (2018).
Recipe1M: A Dataset for Learning Cross-Modal Embeddings for Cook-
ing Recipes and Food Images.

[3] Code: https://github.com/facebookresearch/inversecooking
[4] Repository overview and quickrun guide:

https://github.com/facebookresearch/inversecooking/blob /mas-
ter/README.md

[5] Layers: http://wednesday.csail.mit.edu/temporal/release/recipe1M layers.tar.gz
[6] Ingredient Detection: http://wednesday.csail.mit.edu/temporal/release/det ingrs.json
[7] Training data link: http://wednesday.csail.mit.edu/temporal/release

/recipe1M images train.tar
[8] Testing data link: http://wednesday.csail.mit.edu/temporal/release

/recipe1M images test.tar
[9] Validation data link: http://wednesday.csail.mit.edu/temporal/release

/recipe1M images val.tar

VI. DISCLAIMER

The contents of this report have been equally shared among
the individuals in the group.

Link for Presentation:

https://docs.google.com/presentation/d/1sIv79rMpwgpI1TARtS1sWsB5YQjkTP3s

Lr9ndYiLzHs/edit?usp=sharing

ReadMe and Link to Github Code:

Team 5: Inverse Cooking

This README file will guide you to install the necessary dependencies to run the software, and recreate

the same results that we did. We will be using ASU's Agave Cluster to train this model.

Installing Python 3.6 Dependencies

We are using Python 3.6. To install the correct dependencies, run the follow the command:

`python3 -m pip install --user -r requirements.txt`

Pulling the Inversecooking Repository from GitHub

MAKE SURE TO DOWNLOAD EVERYTHING INTO SCRATCH SPACE

Run this command to pull the Inversecooking repository from GitHub:

`git clone https://github.com/facebookresearch/inversecooking.git `

If you would like to test out their pretrained model, make sure to follow their directions, download the

correct files (e.g `modelbest.ckpt`, `ingr_vocab.pkl`, `instr_vocab.pkl`), and place them in the correct

directory. We will provide more directions on how to the pretrained model later in the README file.

Downloading the Recipe1M Dataset

There are quite a few of `.tar` and `.json` files to download before getting started. The commands to

download them will be listed below:

`wget http://wednesday.csail.mit.edu/temporal/release/recipe1M_layers.tar.gz`

`wget http://wednesday.csail.mit.edu/temporal/release/det_ingrs.json`

`wget http://wednesday.csail.mit.edu/temporal/release/recipe1M_images_train.tar`

`wget http://wednesday.csail.mit.edu/temporal/release/recipe1M_images_test.tar`

https://docs.google.com/presentation/d/1sIv79rMpwgpI1TARtS1sWsB5YQjkTP3sLr9ndYiLzHs/edit?usp=sharing
https://docs.google.com/presentation/d/1sIv79rMpwgpI1TARtS1sWsB5YQjkTP3sLr9ndYiLzHs/edit?usp=sharing

`wget http://wednesday.csail.mit.edu/temporal/release/recipe1M_images_val.tar`

These files should extracted using either command `tar xvf <file>.tar` or command `tar xvzf <file>.tar.gz`

and the extracted files should be placed in the `inversecooking/data ` folder. The directory hierarchy

should look like this:


``` 

\---data 

 +---det_ingrs.json 

  layers1.json 

  layers2.json 

  images 

  +---train 

   +---<training data> 

  +---val 

   +---<validation data> 

  +---test 

   +---<testing data> 

``` 


Running SBATCH Scripts

To take advantage of Agave's resources, we need to be able to submit jobs through SLURM, a workload

manager. We have three SBATCH scripts that needs to be run in this order: `build.sh`, `newdata.sh`, and

`trainmodel.sh`. These scripts will be used to train the model with the **reduced** dataset and obtain

some benchmarks for that model. Because our model has two parts, two separate trainings will occur

and can be seen in the `trainmodel.sh` script. Before running these scripts, however, make sure to

change the directories in the arguments to the directories in your directory. To run an SBATCH script,

run the command `sbatch <file>.sh`. If there seems to be a problem in allocating a job to a node, you can

tweak the parameters before the `python3` commands to find the best available node. To know which

nodes are available, please use this link: https://rcstatus.asu.edu/agave/smallstatus.php.

To run the pretrained model, do **not** use demo.ipynb as errors tend to pop up that way. Instead,

run the SBATCH script `pretrained.sh`.

How your output should look like

The output and error logs for these jobs will be located in `inversecooking/checkpoints/<model

name>/logs`. The training will output to files `train.log` and `train.err`. The benchmarking Python script

will output to files `eval.log` and `eval.err`. You can compare your outputs to our files in the directory

`logs` in our zip file.

Link to Github Code:

https://github.com/ArkanDH/Team5-Inverse-Cooking-Stuff

https://github.com/ArkanDH/Team5-Inverse-Cooking-Stuff

